

Agriculture et Agroalimentaire Canada

Condiment Mustard Breeding: Update

Bifang Cheng, Mustard Breeder

Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre

Outline of the Presentation

- > Mustard Adaptation Test
- Candidate oriental mustard hybrid O3856 for registration
- Development of Group II IMI-tolerant brown and oriental mustard hybrid varieties
- Creating Group II IMI-tolerant yellow mustard germplasm
- Development of clubroot resistant brown and oriental mustard, and yellow mustard
- Acknowledgement

Mustard Adaptation Test

Entries:

Brown mustard: Centennial Brown (check), AAC Brown 18, AAC Brown Elite and candidate hybrid B4253

Oriental mustard: Cutlass (check) and candidate hybrid O3841 **Yellow mustard:** Andante (check), AAC Yellow 80, candidate composite lines Y4015 and Y4016

Trial sites:

Saskatchewan: AAFC-Saskatoon farm, AAFC-Scott farm, AAFC-Swift Current farm, Redvers Manitoba: Melita Alberta: Coaldale; Tabler

Mustard Adaptation Test

> Number of Tests

	No of tests	CV less than
		16%
Brown mustard	17	10
Oriental mustard	16	7
Yellow mustard	15	10

Agronomic performance of AAC Brown 18, AAC Brown Elite and B4253

Entry	Yield			Seed size	Seed Color	Green Seed	Height	Lodging	Maturity
	Kg/ha	Bu/ac	% Check	g/1000seed	WI E313	%	cm	1 to 5	days
Centennial Brown (Check)	1703	30.3	100	2.72	-7.7	0.04	136	2.65	81
AAC Brown 18	1992‡	35.5	117	2.71	-7.1	0.03	138	2.4	81
AAC Brown Elite	1693	30.2	99	2.66	-7.4	0.10	163‡	1.95‡	83‡
B4253	1887‡	33.6	111	2.80‡	-6.9	0.03	144‡	2.3	81
LSD	72.8			0.06	0.73	0.08	4.31	0.36	0.53
# station yrs	10			10	10	10	10	5	10

Quality traits of AAC Brown 18, AAC Brown Elite and B4253

Entry	Fixed Oil	Protein	Allyl GSL	Chlorophyll		
	% w	whole seed	µmole/g seed	mg/kg seed		
Centennial Brown (Check)	36.0	29.5	111	1.88		
AAC Brown 18	37.7‡	27.1‡	109	1.47		
AAC Brown Elite	37.6‡	29.1	121‡	2.36		
B4253	36.5	28.1‡	111	1.52		
LSD	0.46	0.51	2.93	0.63		
# station yrs	10	10	10	10		

Agronomic performance of AAC Brown 18 in the Mustard Adaptation Test in 2017 - 2024

Entry	Yield			Seed Weight	Seed Color	Green Seed	Height	Lodging	Maturity
	Kg/ha	Bu/ac	% Check	g/1000seed	WI E313	%	cm	1 to 5	days
Centennial Brown (Check)	1760	31.4	100	2.98	-5.5	0.10	123	1.54	84
AAC Brown 18	2079‡	37.0	118	2.93‡	-6.1‡	0.11	125‡	1.54	84
LSD	38.5			0.02	0.30	0.02	1.60	0.08	0.32
# station yrs	58			58	58	56	51	41	47

Quality traits of AAC Brown 18 in the Mustard Adaptation Test in 2017 - 2024

Entry	Fixed Oil	Protein	Allyl GSL	Chlorophyll	
	% whole	seed	µmole/g seed	Mg/kg seed	
Centennial Brown (Check)	35.7	30.4	115	2.69	
AAC Brown 18	37.4‡	28.9‡	111‡	2.55	
LSD	0.16	0.18	1.50	0.2	
# station yrs	58	58	58	58	

Agronomic performance of AAC Brown Elite in the Mustard Adaptation Test in 2021 - 2024

Entry		Yield			Seed Color	Green Seed	Height	Lodging	Maturity
	Kg/ha	Bu/ac	% Check	g/1000see d	WI E313	%	cm	1 to 5	days
Centennial Brown (Check)	1647	29.3	100	2.89	-6.4	0.14	122	1.49	82
AAC Brown Elite	1791‡	31.9	109	2.87	-6.5	0.37‡	148‡	1.36 †	85 ‡
LSD	57.15			0.04	0.53	0.10	2.68	0.12	0.37
# station yrs	27			27	27	27	27	20	22

Quality traits of AAC Brown Elite in the Mustard Adaptation Test in 2021 - 2024

Entry	Fixed Oil	Protein	Allyl GSL	Chlorophyll		
	% who	ole seed	µmole/g seed	Mg/kg seed		
Centennial Brown (Check)	36.2	30.0	116	2.26		
AAC Brown Elite	37.7‡	29.5‡	124‡	3.26‡		
LSD	0.24	0.26	1.91	0.45		
# station yrs	27	27	27	27		

Agronomic performance of candidate oriental mustard hybrid O3841

Entry	Yield			Seed size	Seed color	Green Seed	Height	Lodging	Maturity
·	Kg/ha	Bu/ac	% Check	g/1000seed	WI E313	%	cm	1 to 5	days
Cutlass (Check)	1762	31.4	100	2.53	-41.1	0.02	131	1.79	79
O3841	1987‡	35.4	113	2.59	-35.2‡	0.01	144‡	1.82	79
LSD	106			0.06	0.80	0.04	4.33	0.24	0.79
# station yrs	7			7	7	7	7	7	7

Quality traits of candidate oriental mustard hybrid O3841

Entry	Fixed Oil	Protein	Allyl GSL	Chlorophyll		
	% w	vhole seed	µmole/g seed	mg/kg seed		
Cutlass (Check)	43.7	26.2	124	1.16		
O3841	42.9‡	27.1‡	124	1.09		
LSD	0.40	0.56	2.84	0.35		
# station yrs	7	7	7	7		

Agronomic performance of AAC Yellow 80, candidate composite lines Y4015 and Y4016

Entry		Yield		Seed Weight	Seed Color	Green Seed	Height	Lodging	Maturity
	Kg/ha	Bu/ac	% Check	g/1000 seed	WI E313	%	cm	1 to 5	days
Andante (check)	1606	28.6	100	5.15	-42.3	0.07	123	1.64	80
AAC Yellow 80	1730‡	30.8	108	5.29‡	-45.1‡	0.04	125	1.61	80
Y4015	1700‡	30.3	106	5.03	-44.9‡		121	1.5	80
Y4016	1718‡	30.6	107	5.23	-44.2‡		123	1.89	81
LSD	51.1			0.1	0.81	0.04	2.82	0.30	0.53
# station yrs	10			10	10	10	10	7	10

Quality traits of AAC Yellow 80, candidate composite lines Y4015 and Y4016

Entry	Fixed Oil	Protein	HOBenzyl GSL	Chlorophyll
	% whole	seed	µmole/g seed	Mg/kg seed
Andante (check)	29.3	33.8	167	0.95
AAC Yellow 80	30.0‡	33.8	168	0.69‡
Y4015	29.2	33.4	155‡	0.58‡
Y4016	29.5	33.3	153‡	0.79
LSD	0.30	0.36	2.33	0.12
# station yrs	10	10	10	10

Agronomic performance of AAC Yellow 80 in the Mustard Adaptation Test in 2019 to 2024

Entry	Yield			Seed Weight	Seed Color	Green Seed	Height	Lodging	Maturity
	Kg/ha	Bu/ac	% Check	g/1000s eed	WI E313	%	cm	1 to 5	days
Andante (check)	1596	28.4	100	5.98	-38.1	0.23	111	1.40	84
AAC Yellow 80	1731‡	30.8	108	5.98	-41.6‡	0.23	113‡	1.36	84
LSD	25.1			0.04	0.33	0.06	1.14	0.06	0.30
# station yrs	64			63	64	52	60	42	57

Quality traits of AAC Yellow 80 in the Mustard Adaptation Test in 2019 to 2024

Entry	Fixed Oil	Protein	HOBe GSL	Seed Color	Chloro-phyll	Mucilage
	% who	ole seed	µmole/g seed	WI E313 Mg/kg seed		cS/mlg ⁻¹ seed
Andante (check)	28.5	35.1	150	-38.1	1.48	83.2
AAC Yellow 80	29.3‡	34.7‡	148‡	-41.6‡	1.43	81.3
LSD	0.12	0.14	1.66	0.33	0.20	1.98
# station yrs	64	64	61	64	62	50

Outline of the Presentation

Candidate oriental mustard hybrid O3856 for registration

Agronomic performance of the oriental mustard hybrid O3856 in the yield trials in 2019

Entry		Yield		Seed Size	Oil	Protein	Allyl GSL	Butyl GSL	Color	Height	Maturity
	Kg/ha	Bu/ac	% Cutlass	g/1000 seeds	% whole seed	% whole seed	µmole/g seed	µmole/g seed	WI	cm	Days
Cutlass (check)	2996	53	100	2.74	43.3	29.1	120	0.49	-46.2	141	101
O3856	3522	63	118	3.31‡	44.1	28.8	130‡	0.48	-42.9‡	146	101
LSD	364			0.12	0.63	0.53	5.63	0.08	1.64	8.90	4.00
# station years	2			2	2	2	2	2	2	2	2

Agronomic performance of the oriental mustard hybrid O3856 in the Mustard Adaptation Test in 2020

Entry	Yield			Seed size	Seed Color	Green seed	Height	Lodging	Maturity
	Kg/ha	Bu/ac	% check	g/1000 seeds	WI	%	cm	1-5	Days
Cutlass (check)	2308	41.2	100	2.59	-41.9	0.33	126	2.01	88
O3856	2511‡	44.8	109	2.92‡	-42.6	0.2	128	1.84	88
LSD	107			0.06	0.79	0.16	3.06	0.18	0.59
# station yrs	13			13	13	13	11	11	11

Quality traits of the oriental mustard hybrid O3856 in the Mustard Adaptation Test in 2020

	Oil	Protein	Allyl GSL	Chlorophyll
Entry	% whole seed	% whole seed	µmole/g seed	Mg/Kg seed
Cutlass	42.6	27.8	121	1.7
O3856	43.1†	27.9	130‡	1.3
LSD	0.35	0.31	3.86	0.57
# station yrs	13	13	13	13

Agronomic performance of the oriental mustard hybrid O3856 in the Mustard Adaptation Test in 2021

Entry	Yield			Seed	Seed Color	Green seed	Height	Lodging	Maturity
	Kg/ha	Bu/ac	% check	g/1000 seeds	WI	%	cm 1-5	Days	
Cutlass (check)	1473	26.3	100	2.63	-40.4	0.27	102	1.25	74
O3856	1641‡	29.3	111	2.94‡	-39.0	0.24	110‡	1.06	75
LSD	66.9			0.06	1.04	0.30	4.17	0.32	0.81
# station yrs	7			7	7	7	5	4	4

Quality traits of the oriental mustard hybrid O3856 in the Mustard Adaptation Test in 2021

Entry	Oil	Protein	Allyl GSL	Chlorophyll
	% whole seed	% whole seed	µmole/g seed	Mg/Kg seed
Cutlass (check)	37.4	31.6	140	4.83
O3856	38.1‡	31.8	154‡	5.81
LSD	0.34	0.24	4.52	2.78
# station yrs	7	7	7	7

Agronomic performance of the oriental mustard hybrid O3856 in the yield trials in 2019, and in the Mustard Adaptation Test in 2020 and 2021

Entry	Yield			Seed size	Seed color	Height	Lodging	Maturity
	Kg/ha	Bu/ac	% check	g/1000 seeds	WI	cm	1-5	Days
Cutlass (check)	2116	37.8	100	2.62	-41.8	122	1.79	86
O3856	2325‡	41.5	110	2.96‡	-41.5	125‡	1.61‡	86
LSD	75.8			0.04	0.70	2.25	0.16	0.58
# station yrs	22			22	22	18	15	17

Quality traits of the oriental mustard hybrid O3856 in the yield trials in 2019, and in the Mustard Adaptation Test in 2020 and 2021

En4wy	Oil	Protein	Allyl GSL	Chlorophyll
Entry	%whole seed	%whole seed	µmole/g seed	Mg/Kg seed
Cutlass (check)	41.0	29.1	127	2.58
O3856	41.6‡	29.2	137‡	2.66
LSD	0.20	0.20	2.04	0.85
# station yrs	22	22	22	20

Disease reactions for the oriental mustard hybrid O3856

		Blackleg	White rust
		severity	severity (0–9)
Entry	Year	(0–5)	Race 2a
Cutlass (check)	2020	0.21	0.5
O3856	2020	0.28	0.1

Outline of the Presentation

Progress on development of Group 2 herbicide tolerant brown and oriental mustard hybrid varieties

- Progress on development of Group 2 herbicide tolerant brown and oriental mustard hybrid varieties
- 1. About 150 IMI-tolerant brown mustard Ogura cms R lines have been produced.
- 2. About 20 IMI-tolerant brown mustard Ogura cms A and B lines have been produced.
- **3.** About 130 IMI-tolerant oriental mustard Ogura cms R lines have been produced.
- 4. About 20 IMI-tolerant oriental mustard Ogura cms A and B lines have been produced.
- 5. Group II IMI-tolerant brown mustard hybrid yield trial

Group II IMI-tolerant brown mustard hybrid yield trial

Entries of the IMI-tolerant brown mustard yield trial: Centennial Brown (check), and nine test hybrids: B4148, B4149, B4150, B4151, B4152, B4157, B4158, B4159 and B4160

>4 Replicates; Randomized complete block design

- Three sites and 6 tests
- Tests 1-4 are not sprayed with Group II herbicides Test 1. CYT01a Saskatoon 1 Test 2. CYT01b Saskatoon 2 Test 3: CYT01 Swift Current Test 4: CYT01 Redvers

Group II IMI-tolerant brown mustard hybrid yield trial

Tests 5-6 were sprayed with Group II IMI herbicides
Test 5. CYT01c Saskatoon: Sprayed with Ares at the
recommending 1x rate
Test 6. CYT01d Saskatoon: Sprayed with Group II herbicide
Odyssey at the recommending 1x rate

Note: Centennial Brown plots of tests 5 and 6 were covered with plastic when the trials were sprayed with **Ares** and **Odyssey**.

Herbicide: Ares

Centennial Brown

14 days after spraying

1x rate

Control: not sprayed

Plants covered with plastic14 days afterCentennial Brown

Herbicide: Ares at 1 x rate

Plants at spraying14 days after sprayingTest hybrid: B4159

Herbicide: Odyssey at 1 x rate

Plants at spraying

14 days after spraying

Test hybrid: B4159

Yield of the IMI-tolerant brown mustard test hybrids B4151 and B4159 in the yield trials (not sprayed with herbicide)

	Centennial	B4151		B4159		
	Brown	(bu/ac)	% of	(bu/ac)	% of	CV
	(bu/ac)		check		check	(%)
Not sprayed						
Test 1. CYT01a SA	38.2	44.2	116	43.2	113	10.9
Test 2. CYT01b SA	36.9	40.7	110	40.7	110	7.2
Test 3. CYT01SW	24.8	26.4	107	24.6	99	7.4
Test 4. CYT01RE	27.1	30.0	111	27.6	102	7.1

Yield of the IMI-tolerant brown mustard test hybrids B4151 and B4159 in the yield trials sprayed with herbicide)

	Centennial	B4151		B4159		
	Brown	Brown (bu/ac) % of		(bu/ac)	% of	CV
	(bu/ac)		check		check	(%)
Test 5. CYT01cSA:	35.1	44.7	127	46.6	133	9.2
Ares at 1x rate						
Test 6: CYT01dSA:	34.1	40.5	119	44.1	129	6.7
Odyssey at 1x rate						

Note: Centennial brown plots were covered with plastic at sparying

Agronomic performance of the two IMI-tolerant test hybrids B4151 and B4159 (6 trials)

Entry		Yield		Seed Weight	Color	DTF	Height	Lodging	DTM	Sprouting
	Kg/ha	bu/ac	% Check	g/1000s	WI	Days	cm	1 to 5	Days	% seeds
Centennial Brown (check)	1798	32.0	100	2.62	-7.2	45	143	2.0	83	0.93
B4151 B4159	2050* 2031*	36.5 36.2	114 113	2.73* 2.78*	-6.3 -5.4*	44 44	147 149	1.9 2.3	83 83	1.02 0.69
LSD # of station yrs	96.6 6			0.06 6	0.73 6	0.35 6	4.29 6	0.39 5	0.45 6	0.36 6

Quality traits of the two test hybrids B4151 and B4159 (6 trials)

Entry	Oil	Protein	Allyl GSL	Texture
	%	%	µmole/g	2-5 cm
Centennial Brown	36.2	29.3	107	2.1
B4151	36.9	28.5	120*	3.3
B4159	35.6	29.9	126*	2.7
LSD	0.61	0.65	3.15	
# of station yrs	6	6	6	

Texture measurement with a Bostwick.

Outline of the Presentation

Progress on creating Group II IMI-tolerant yellow mustard germplasm

Development of Group 2 HT yellow mustard

Approach: Seed mutagenesis via ethyl methanesulfonate (EMS)

Results:

- Chile winter nursery spray trial in 2023: The 2 M₁ plants that survived the Solo spray have the same SNP mutation in the ALS gene as that in the previous mutant line Y4063-1.
- Two new EMS mutagenized populations using Andante and AAC Yellow 80 as seed source were created. The resulting M₁ seeds will be planted in the field in Saskatoon and sprayed with Solo at the recommending rate (325 ml/acre) in 2025 field season.

Outline of the Presentation

Development of clubroot resistant brown and oriental mustard, and yellow mustard

Development of clubroot resistant brown and oriental mustard

Approaches

Transferring the clubroot resistant gene from *B. napus* into brown and oriental mustard via interspecific crossing

Screening *B. juncea* germplasm for clubroot resistant gene

Development of clubroot resistant brown and oriental mustard

Transferring the clubroot resistant gene from B. napus into brown and oriental mustard via interspecific crossing

Result:

• The clubroot resistant gene **Rcr1** on chromosome A03 from clubroot resistant *B. napus* line Y549-(0)-2-1 was transferred into IMI-tolerant brown and oriental mustard Ogura cms restorer and maintainer lines

Development of clubroot resistant brown and oriental mustard

Screening *B. juncea* germplasm for clubroot resistant gene

Result:

- 64 *B. juncea* accessions were screened against *P. brassicae* pathotype 3.
- All of the lines are susceptible to clubroot disease.

Development of clubroot resistant yellow mustard

Approach:

Screening yellow mustard germplasm of different origin for clubroot resistant gene

Results:

- Progeny plants from the putative clubroot resistant plants proved to be susceptible
- Continue screening more accessions

Acknowledgements

AAFC-SRDC: Mustard breeding group Mark Halliday, Charlene Pound, Jianwei Zhao, Melissa Kehr and Hillory Mayoh

AAFC-SRDC: Oilseed marker and chemistry labs Vicky Roslinsky, David Sarich, Dr. Yong Zhou, Ms. Dawnne Campbell and Dr. Ning Xu

AAFC-Swift Current Research and Development Centre AAFC-Scott Research and Development Centre

Acknowledgements

Funding Support:

- 1. The Canadian Agricultural Partnership (CAP) program
- 2. Mustard 21 Canada Inc.
- **3. The Western Grain Research Foundation**

Thank you!

